首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Emergence of Turing Patterns in a Simple Cellular Automata-Like Model via Exchange of Integer Values between Adjacent Cells
  • 本地全文:下载
  • 作者:Takeshi Ishida
  • 期刊名称:Discrete Dynamics in Nature and Society
  • 印刷版ISSN:1026-0226
  • 电子版ISSN:1607-887X
  • 出版年度:2020
  • 卷号:2020
  • 页码:1-12
  • DOI:10.1155/2020/2308074
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    The Turing pattern model is one of the theories used to describe organism formation patterns. Using this model, self-organized patterns emerge due to differences in the concentrations of activators and inhibitors. Here a cellular automata (CA)-like model was constructed wherein the Turing patterns emerged via the exchange of integer values between adjacent cells. In this simple hexagonal grid model, each cell state changed according to information exchanged from the six adjacent cells. The distinguishing characteristic of this model is that it presents a different pattern formation mechanism using only one kind of token, such as a chemical agent that ages via spatial diffusion. Using this CA-like model, various Turing-like patterns (spots or stripes) emerge when changing two of four parameters. This model has the ability to support Turing instability that propagates in the neighborhood space; global patterns are observed to spread from locally limited patterns. This model is not a substitute for a conventional Turing model but rather is a simplified Turing model. Using this model, it is possible to control the formation of multiple robots into such forms as circle groups or dividing a circle group into two groups, for example. In the field of information networks, the presented model could be applied to groups of Internet-of-Things devices to create macroscopic spatial structures to control data traffic.

国家哲学社会科学文献中心版权所有