In this paper, upper bound on the probability of maximum a posteriori (MAP) decoding error for systematic binary linear codes over additive white Gaussian noise (AWGN) channels is proposed. The proposed bound on the bit error probability is derived with the framework of Gallager’s first bounding technique (GFBT), where the Gallager region is defined to be an irregular high-dimensional geometry by using a list decoding algorithm. The proposed bound on the bit error probability requires only the knowledge of weight spectra, which is helpful when the input-output weight enumerating function (IOWEF) is not available. Numerical results show that the proposed bound on the bit error probability matches well with the maximum-likelihood (ML) decoding simulation approach especially in the high signal-to-noise ratio (SNR) region, which is better than the recently proposed Ma bound.