Ship surveillance using space-borne synthetic aperture radar (SAR), taking advantages of high resolution over wide swaths and all-weather working capability, has attracted worldwide attention. Recent activity in this field has concentrated mainly on the study of ship detection, but the classification is largely still open. In this paper, we propose a novel ship classification scheme based on analytic hierarchy process (AHP) in order to achieve better performance. The main idea is to apply AHP on both feature selection and classification decision. On one hand, the AHP based feature selection constructs a selection decision problem based on several feature evaluation measures (e.g., discriminability, stability, and information measure) and provides objective criteria to make comprehensive decisions for their combinations quantitatively. On the other hand, we take the selected feature sets as the input of KNN classifiers and fuse the multiple classification results based on AHP, in which the feature sets’ confidence is taken into account when the AHP based classification decision is made. We analyze the proposed classification scheme and demonstrate its results on a ship dataset that comes from TerraSAR-X SAR images.