首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Causal Analysis for Performance Modeling of Computer Programs
  • 本地全文:下载
  • 作者:Jan Lemeire ; Erik Dirkx ; Frederik Verbist
  • 期刊名称:Scientific Programming
  • 印刷版ISSN:1058-9244
  • 出版年度:2007
  • 卷号:15
  • 期号:3
  • 页码:121-136
  • DOI:10.1155/2007/916861
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Causal modeling and the accompanying learning algorithms provide useful extensions for in-depth statistical investigation and automation of performance modeling. We enlarged the scope of existing causal structure learning algorithms by using the form-free information-theoretic concept of mutual information and by introducing the complexity criterion for selecting direct relations among equivalent relations. The underlying probability distribution of experimental data is estimated by kernel density estimation. We then reported on the benefits of a dependency analysis and the decompositional capacities of causal models. Useful qualitative models, providing insight into the role of every performance factor, were inferred from experimental data. This paper reports on the results for a LU decomposition algorithm and on the study of the parameter sensitivity of the Kakadu implementation of the JPEG-2000 standard. Next, the analysis was used to search for generic performance characteristics of the applications.

  • 关键词:Performance modeling; modeling techniques; performance attributes; smoothing; graph algorithms; multivariate; statistics; machine learning
国家哲学社会科学文献中心版权所有