首页    期刊浏览 2025年06月04日 星期三
登录注册

文章基本信息

  • 标题:On the Hardness of Learning With Errors with Binary Secrets
  • 本地全文:下载
  • 作者:Daniele Micciancio
  • 期刊名称:Theory of Computing
  • 印刷版ISSN:1557-2862
  • 电子版ISSN:1557-2862
  • 出版年度:2018
  • 卷号:14
  • 页码:1-17
  • DOI:10.4086/toc.2018.v014a013
  • 出版社:University of Chicago
  • 摘要:We give a simple proof that the decisional Learning With Errors (LWE) problem with binary secrets (and an arbitrary polynomial number of samples) is at least as hard as the standard LWE problem (with unrestricted, uniformly random secrets, and a bounded, quasi-linear number of samples). This proves that the binary-secret LWE distribution is pseudorandom, under standard worst-case complexity assumptions on lattice problems. Our results are similar to those proved by Brakerski, Langlois, Peikert, Regev and Stehlé (STOC 2013), but provide a shorter, more direct proof, and a small improvement in the noise growth of the reduction.
  • 关键词:complexity theory; cryptography; pseudorandomness; lattice; learning; LWE
国家哲学社会科学文献中心版权所有