首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Forecasting The Broad Proportion Attack of Rice Blast Disease in Indonesia
  • 本地全文:下载
  • 作者:Iman Setiawan ; I Made Sumertajaya ; Farit Mochammad Afendi
  • 期刊名称:International Journal of Computer Science and Network
  • 印刷版ISSN:2277-5420
  • 出版年度:2017
  • 卷号:6
  • 期号:6
  • 页码:766-770
  • 出版社:IJCSN publisher
  • 摘要:Classical regression analysis is a statistical technique for modeling, forecasting and investigating the relationship between response variable and explanatory variables. However, there are model adequacy must be checked on residual model i.e. autocorrelation. The autocorrelation problem can be solved by modeling the residual of regression model into model that specifically incorporates the autocorrelation structure. Autocorrelation can be caused by residual of regression model increasing over time. The time series regression model is one of the analyzes used to accommodate the model residual which increasing over time. This study used data on the broad proportion of rice blast (Pyricularia grisea) attacks. The purpose of this study is to forecast the broad proportion of rice blast attacks used classical regression model and time series regression model. Evaluate forecast values used mean absolute percentage error (MAPE). The comparison results showed that the forecast of time series regression model better than classical regression model.
  • 关键词:forecasting; MAPE; pyricularia grisea; regression; time series regression model
国家哲学社会科学文献中心版权所有