首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A Survey of Topic Model Inference Techniques
  • 本地全文:下载
  • 作者:Geoffrey Mariga Wambugu ; George Okeyo ; Stephen Kimani
  • 期刊名称:International Journal of Computer and Information Technology
  • 印刷版ISSN:2279-0764
  • 出版年度:2018
  • 卷号:7
  • 期号:4
  • 页码:163-169
  • 出版社:International Journal of Computer and Information Technology
  • 摘要:Latent Dirichlet Allocation (LDA) is a probabilistic topic model that aims at organizing, visualizing, summarizing, searching, predicting and understanding the content of any given text data. The model enables users to discover themes in text, annotate, organize and summarize documents. LDA inference involves estimating the parameters and posterior distribution of a formulated mathematical relationship. This paper investigates topic modeling literature based on LDA and presents discoveries and state of the art in the topic. Presented also are challenges and popular tools. In conclusion, the paper identifies Gibbs sampling as a popular inference mechanism and notes that the method is limited for application in big data settings.
  • 关键词:Topic Modelling; Latent Dirichlet Allocation; Sampling; Inference Techniques
国家哲学社会科学文献中心版权所有