首页    期刊浏览 2025年07月24日 星期四
登录注册

文章基本信息

  • 标题:RЀNYI ENTROPY FOR MIXTURE MODEL OF ULTIVARIATE SKEW NORMAL-CAUCHY DISTRIBUTIONS
  • 本地全文:下载
  • 作者:SALAH H. ABID ; UDAY J. QUAEZ
  • 期刊名称:Journal of Theoretical and Applied Information Technology
  • 印刷版ISSN:1992-8645
  • 电子版ISSN:1817-3195
  • 出版年度:2019
  • 卷号:97
  • 期号:13
  • 页码:3526-3539
  • 出版社:Journal of Theoretical and Applied
  • 摘要:R�nyi entropy is the important concept developed by R�nyi in the context of entropy theory. We study in detail this measure of information in case of multivariate skew normal Cauchy distributions. Mixture model of these distributions is proposed. In addition, upper and lower bounds of entropy both types Shannon and R�nyi are found on this model. Also, an asymptotic expression for R�nyi entropy for a mixture of skew distributions is given in approximation by using some inequalities, multinomial theorem and properties of L^p -spaces. Finally, we give a real data examples to illustrate the behavior of R�nyi entropy of the proposed mixture model.
  • 关键词:R�nyi Entropy; Mixture Model; Multivariate Skew Normal Cauchy Distribution; Multinomial Theorem; Approximate Entropy
国家哲学社会科学文献中心版权所有