首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:Critical random forests
  • 本地全文:下载
  • 作者:James B. Martin ; Dominic Yeo
  • 期刊名称:Latin American Journal of Probability and Mathematical Statistics
  • 电子版ISSN:1980-0436
  • 出版年度:2018
  • 卷号:XV
  • 期号:2
  • 页码:913-960
  • DOI:10.30757/ALEA.v15-35
  • 出版社:Instituto Nacional De Matemática Pura E Aplicada
  • 摘要:Let F(N;m) denote a random forest on a set of N vertices, chosenuniformly from all forests with m edges. Let F(N; p) denote the forest obtainedby conditioning the Erd}os-Renyi graph G(N; p) to be acyclic. We describe scalinglimits for the largest components of F(N; p) and F(N;m), in the critical windowp = N􀀀1 + O(N􀀀4=3) or m = N=2 + O(N2=3). Aldous (1997) described a scalinglimit for the largest components of G(N; p) within the critical window in terms ofthe excursion lengths of a reected Brownian motion with time-dependent drift.Our scaling limit for critical random forests is of a similar nature, but now basedon a reected di usion whose drift depends on space as well as on time.
  • 关键词:Random forest; random graph; critical window; exploration process;
国家哲学社会科学文献中心版权所有