期刊名称:Latin American Journal of Probability and Mathematical Statistics
电子版ISSN:1980-0436
出版年度:2018
卷号:XV
期号:2
页码:1027-1063
DOI:10.30757/ALEA.v15-38
出版社:Instituto Nacional De Matemática Pura E Aplicada
摘要:We prove a conditional decoupling inequality for the model of randominterlacements in dimension d ≥ 3: the conditional law of random interlacementson a box (or a ball) A1 given the (not very “bad”) configuration on a “distant” setA2 does not differ a lot from the unconditional law. The main method we use is asuitable modification of the soft local time method of Popov and Teixeira (2015),that allows dealing with conditional probabilities.
关键词:Random interlacements; stochastic domination; soft local time