首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Towards Optimal Depth Reductions for Syntactically Multilinear Circuits
  • 本地全文:下载
  • 作者:Mrinal Kumar ; Rafael Mendes de Oliveira ; Ramprasad Saptharishi
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2019
  • 卷号:2019
  • 页码:1-17
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    We show that any n -variate polynomial computable by a syntactically multilinear circuit of size pol y ( n ) can be computed by a depth- 4 syntactically multilinear ( ) circuit of size at most exp O n log n . For degree d = ( n log n ) , this improves upon the upper bound of exp O ( d log n ) obtained by Tavenas (MFCS 2015) for general circuits, and is known to be asymptotically optimal in the exponent when d n for a small enough constant . Our upper bound matches the lower bound of exp n log n proved by Raz and Yehudayoff (CC 2009), and thus cannot be improved further in the exponent. Our results hold over all fields and also generalize to circuits of small individual degree.

    More generally, we show that an n -variate polynomial computable by a syntactically multilinear circuit of size pol y ( n ) can be computed by a syntactically multilinear circuit of product-depth of size at most exp O ( n log n ) 1 log n . It follows from the lower bounds of Raz and Yehudayoff (CC 2009) that in general, for constant , the exponent in this upper bound is tight and cannot be improved to o n log n 1 log n .

  • 关键词:Algebraic circuits ; Aritmetic Circuit ; Depth reduction ; Multilinear Circuit
国家哲学社会科学文献中心版权所有