首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Stoquastic PCP vs. Randomness
  • 本地全文:下载
  • 作者:Dorit Aharonov ; Alex Bredariol Grilo
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2019
  • 卷号:2019
  • 页码:1-33
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    The derandomization of MA, the probabilistic version of NP, is a long standing open question. In this work, we connect this problem to a variant of another major problem: the quantum PCP conjecture. Our connection goes through the surprising quantum characterization of MA by Bravyi and Terhal. They proved the MA-completeness of the problem of deciding whether the groundenergy of a uniform stoquastic local Hamiltonian is zero or inverse polynomial. We show that the gapped version of this problem, i.e. deciding if a given uniform stoquastic local Hamiltonian is frustration-free or has energy at least some constant , is in NP. Thus, if there exists a gap-amplification procedure for uniform stoquastic Local Hamiltonians (in analogy to the gap amplification procedure for constraint satisfaction problems in the original PCP theorem), then MA = NP (and vice versa). Furthermore, if this gap amplification procedure exhibits some additional (natural) properties, then P = RP. We feel this work opens up a rich set of new directions to explore, which might lead to progress on both quantum PCP and derandomization. As a small side result, we also show that deciding if commuting stoquastic Hamiltonian is frustration free is in NP.

  • 关键词:derandomization ; local Hamiltonians ; quantum pcp
国家哲学社会科学文献中心版权所有