首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Rich Style Embedding for Intrinsic Plagiarism Detection
  • 本地全文:下载
  • 作者:Oumaima Hourrane ; El Habib Benlahmer
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2019
  • 卷号:10
  • 期号:11
  • 页码:646-651
  • 出版社:Science and Information Society (SAI)
  • 摘要:Stylometry plays an important role in the intrinsic plagiarism detection, where the goal is to identify potential plagiarism by analyzing a document involving undeclared changes in writing style. The purpose of this paper is to study the interaction between syntactic structures, attention mechanism, and contextualized word embeddings, as well as their effectiveness on plagiarism detection. Accordingly, we propose a new style embedding that combines syntactic trees and the pre-trained Multi-Task Deep Neural Network (MT-DNN). Additionally, we use attention mechanisms to sum the embeddings, thereby experimenting with both a Bidirectional Long Short-Term Memory (BiLSTM) and a Convolutional Neural Network (CNN) maxpooling for sentences encoding. Our model is evaluated on two sub-task; style change detection and style breach detection, and compared with two baseline detectors based on classic stylometric features.
  • 关键词:Plagiarism detection; style embedding; deep neural network; stylometry; syntactic trees
国家哲学社会科学文献中心版权所有