首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:On-line Television Stream Classification by Genre
  • 本地全文:下载
  • 作者:Karlis Martins Briedis ; Karlis Freivalds
  • 期刊名称:Baltic Journal of Modern Computing
  • 印刷版ISSN:2255-8942
  • 电子版ISSN:2255-8950
  • 出版年度:2018
  • 卷号:6
  • 期号:3
  • 页码:1-12
  • DOI:10.22364/bjmc.2018.6.3.02
  • 出版社:Vilnius University, University of Latvia, Latvia University of Agriculture, Institute of Mathematics and Informatics of University of Latvia
  • 摘要:Convolutional neural networks (CNNs) have become the state-of-the-art solution for image classification and other related problems. This paper investigates the use of CNNs’ features for on-line television stream classification by genre of the programme. As most existing offline classification solutions propose the use of low level audio-visual video descriptors, this paper compares the precision achieved by simple structure multi-layer perceptrons (MLP) and long short-term memory (LSTM) recurrent neural networks (RNNs) using either low level visual and audial descriptors or activations of InceptionV3 CNN’s global pooling layer as features. The best real-time classification accuracy on evaluation data set of 71,6% was achieved by an LSTM RNN of CNN features, supporting the use of CNNs for television genre classification.
  • 关键词:television genre classification; television stream classification; video classification; neural networks; InceptionV3
国家哲学社会科学文献中心版权所有