首页    期刊浏览 2025年06月29日 星期日
登录注册

文章基本信息

  • 标题:Emergence of population structure in socio-cognitively inspired ant colony optimization
  • 本地全文:下载
  • 作者:A. Byrski ; E. Świderska ; J. Łasisz
  • 期刊名称:Computer Science
  • 印刷版ISSN:1508-2806
  • 出版年度:2018
  • 卷号:19
  • 期号:1
  • 页码:1-18
  • 出版社:Data set: BazTech
  • 摘要:A metaheuristic proposed by us recently, Ant Colony Optimization (ACO) hybridized with socio-cognitive inspirations, turned out to generate interesting results when compared to classic ACO. Even though it does not always find better solutions to the considered problems, it usually finds sub-optimal solutions. Moreover, instead of a trial-and-error approach to configure the parameters of the ant species in the population, the actual structure of the population emerges from a predefined species-to-species ant migration strategies in our approach. Experimental results of our approach are compared to classic ACO and selected socio-cognitive versions of this algorithm.
  • 关键词:ant colony optimization; socio;cognitive systems; discrete optimization; emergence
国家哲学社会科学文献中心版权所有