首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Ensemble learning using frequent itemset mining for anomaly detection
  • 本地全文:下载
  • 作者:Saeid Soheily-Khah ; Yiming Wu
  • 期刊名称:Computer Science & Information Technology
  • 电子版ISSN:2231-5403
  • 出版年度:2019
  • 卷号:9
  • 期号:9
  • 页码:1-17
  • DOI:10.5121/csit.2019.90931
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:Anomaly detection is vital for automated data analysis, with specific applications spanning almost every domain. In this paper, we propose a hybrid supervised learning of anomaly detection using frequent itemset mining and random forest with an ensemble probabilistic voting method, which outperforms the alternative supervised learning methods through the commonly used measures for anomaly detection: accuracy, true positive rate (i.e. recall) and false positive rate. To justify our claim, a benchmark dataset is used to evaluate the efficiency of the proposed approach, where the results illustrate its benefits.
  • 关键词:Ensemble learning; anomaly detection; frequent (closed ; maximal) itemset mining; random forest; classification
国家哲学社会科学文献中心版权所有