首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:AdaBoost for Concrete Type of Keywords Annotation
  • 本地全文:下载
  • 作者:Wei-Chao Lin ; Yan-Ze Chen ; Shu-Yuan Chen
  • 期刊名称:Lecture Notes in Engineering and Computer Science
  • 印刷版ISSN:2078-0958
  • 电子版ISSN:2078-0966
  • 出版年度:2018
  • 卷号:2233&2234
  • 页码:293-298
  • 出版社:Newswood and International Association of Engineers
  • 摘要:The semantic gap presents an arduous task in semantic-based image retrieval investigations. In this paper, the author proposes the AdaBoost learning algorithm for large vocabulary classification. The main finding of this investigation is that using Gentle AdaBoost for image classification produced excellent results in terms of precision and the F-measure. With 190 concrete keywords categorisation, AdaBoost renders more keywords assignable and allows a significant improvement in all accuracy measures: precision, recall and F-measure. An AdaBoost vs. SVMs comparison showed that AdaBoost was an effective classifier using the one-versus-the-rest mode of operation.
  • 关键词:Image annotation 、 Content;based image retrieval、AdaBoost learning algorithm
国家哲学社会科学文献中心版权所有