首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:An adaptive genetic algorithm for a dynamic single-machine scheduling problem
  • 本地全文:下载
  • 作者:Jose-Fernando Jimenez ; Eliana Gonzalez-Neira ; Gabriel Zambrano-Rey
  • 期刊名称:Management Science Letters
  • 印刷版ISSN:1923-9335
  • 电子版ISSN:1923-9343
  • 出版年度:2018
  • 卷号:8
  • 期号:11
  • 页码:1117-1132
  • DOI:10.5267/j.msl.2018.8.011
  • 出版社:Growing Science
  • 摘要:Nowadays, industries cope with a wide range of situations and/or perturbations that endanger the manufacturing productivity. Traditionally, manufacturing control systems are responsible for managing the manufacturing scheduling and execution, as these have the capability of maintaining the production operations regardless of a given perturbation. Still, the challenge of these systems is to achieve an optimal performance after the perturbations occur. For this reason, manufacturing control systems must incorporate a mechanism with intelligent capabilities to look for optimal performance and operation reactivity regardless of any scenario. This paper proposes a generic control strategy for a manufacturing control system for piloting the execution of a dynamic scheduling problem, considering a new job arrival as the manufacturing perturbation. The study explores a predictive-reactive approach that couples a genetic algorithm for the predictive scheduling and an adaptive genetic algorithm for reactivity control aiming to minimize the weighted tardiness in a dynamic manufacturing scenario. The results obtained from this proposal verify that the effectiveness was improved by using adaptive metaheuristic in a dynamic scheduling problem, considering absorbing the degradation caused by the perturbation.
  • 关键词:Adaptive Genetic algorithm Dynamic Scheduling Manufacturing control Predictive;Reactive Optimality Reactivity
国家哲学社会科学文献中心版权所有