首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Succinct Review on State-of-art Carbon-based Phase Change Material for Solar Thermal Storage Applications
  • 本地全文:下载
  • 作者:Felix Ishola ; Philip Babalola ; Obafemi Olatunji
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:152
  • 页码:1-4
  • DOI:10.1051/e3sconf/202015202008
  • 出版社:EDP Sciences
  • 摘要:Radiation from the sun continually generates enormous solar energy reaching the atmosphere and then radiates back into the outer space over a while. The energy source is considered to be potential renewable thermal energies if effectively harnessed and stored. Thermal energy storage could be in either cold or heat form for later use for either cooling and heating purposes respectively; it can also be utilized for electricity production. The development of highly efficient and cost-effective heat storage materials has been an emerging school of thought for researches into smart methods of heat storage. The authors briefly review the state-of-art carbon-based composite phase change materials (PCM) that have been employed in applications that are related to thermal storage. Various types of recently developed carbon composites with improved thermal storage properties have been succinctly discussed. The technological implications of employing the identified materials in the thermal storage applications were also highlighted and discussed.
  • 其他摘要:Radiation from the sun continually generates enormous solar energy reaching the atmosphere and then radiates back into the outer space over a while. The energy source is considered to be potential renewable thermal energies if effectively harnessed and stored. Thermal energy storage could be in either cold or heat form for later use for either cooling and heating purposes respectively; it can also be utilized for electricity production. The development of highly efficient and cost-effective heat storage materials has been an emerging school of thought for researches into smart methods of heat storage. The authors briefly review the state-of-art carbon-based composite phase change materials (PCM) that have been employed in applications that are related to thermal storage. Various types of recently developed carbon composites with improved thermal storage properties have been succinctly discussed. The technological implications of employing the identified materials in the thermal storage applications were also highlighted and discussed.
国家哲学社会科学文献中心版权所有