摘要:The purpose of the research was to study the potency of Murraya koenigii leaves extract to overcome the mammary tumor in Sprague Dawley rat. Thirty-five female rats were divided into seven groups: control (P1), tumor without therapy (P2), methotrexate group (P3), curative groups (P4 and P5) were given extract after the tumor was formed, and preventive groups (P6 and P7) were given extract before the tumor was formed with dose of 300 and 400 mg/kg, respectively. The induction of mammary tumor in rats were carried out using 7,12 dimethylbenz(α) anthracene (DMBA) subcutaneously. Bodyweight and tumor size were measured every week for 4 weeks. At the end of treatment, rats were euthanized and mammary glands were collected for histopathological examination. The result showed tumor size in P2 was significantly higher (p<0.05) than in other groups. On the other hand, tumor size in P4 and P6 were significantly smaller (p<0.05) compared to P5 and P7. Histopathological changes showed PMN cells, 1-3 layers of cuboid epithelial and solid collagen fibers proliferation in P2, while in P3 to P7 showed moderate collagen fibers proliferation. In conclusion, the administration of the extract at a dose of 300 mg/kg can decelerate tumor development in Sprague Dawley rat mammary gland.
其他摘要:The purpose of the research was to study the potency of Murraya koenigii leaves extract to overcome the mammary tumor in Sprague Dawley rat. Thirty-five female rats were divided into seven groups: control (P1), tumor without therapy (P2), methotrexate group (P3), curative groups (P4 and P5) were given extract after the tumor was formed, and preventive groups (P6 and P7) were given extract before the tumor was formed with dose of 300 and 400 mg/kg, respectively. The induction of mammary tumor in rats were carried out using 7,12 dimethylbenz(α) anthracene (DMBA) subcutaneously. Bodyweight and tumor size were measured every week for 4 weeks. At the end of treatment, rats were euthanized and mammary glands were collected for histopathological examination. The result showed tumor size in P2 was significantly higher (p<0.05) than in other groups. On the other hand, tumor size in P4 and P6 were significantly smaller (p<0.05) compared to P5 and P7. Histopathological changes showed PMN cells, 1-3 layers of cuboid epithelial and solid collagen fibers proliferation in P2, while in P3 to P7 showed moderate collagen fibers proliferation. In conclusion, the administration of the extract at a dose of 300 mg/kg can decelerate tumor development in Sprague Dawley rat mammary gland.