首页    期刊浏览 2024年09月20日 星期五
登录注册

文章基本信息

  • 标题:The influence of curing temperature, plastic additives and polypropylene fibers on the mechanical behaviour of cementitious materials
  • 本地全文:下载
  • 作者:Mohammed Aqil ; Lahcen Bahi ; Latifa Ouadif
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:150
  • 页码:1-6
  • DOI:10.1051/e3sconf/202015002012
  • 出版社:EDP Sciences
  • 摘要:An experimental company was carried out to better understand the influence of curing temperature on the mechanical behaviour of cementitious materials, particularly compressive strength, the study focused on two types of mortars, the first containing polypropylene fibers while the second contains a proportion of PVC-type plastic grains from industrial waste, the hydration kinetics of the different components of the formulated mortar has been characterized by the isothermal calorimetric test, thus a history of the hydration degrees has been established, Afterwards, an attempt was made to correlate the compressive strength with the evolution of the degree of hydration for the different formulations, based on the results obtained, it is clearly observable that the compressive strength evolves with the degree of hydration and that the specimen containing the polypropylene fibers has the best mechanical performance with respect to compression.
  • 其他摘要:An experimental company was carried out to better understand the influence of curing temperature on the mechanical behaviour of cementitious materials, particularly compressive strength, the study focused on two types of mortars, the first containing polypropylene fibers while the second contains a proportion of PVC-type plastic grains from industrial waste, the hydration kinetics of the different components of the formulated mortar has been characterized by the isothermal calorimetric test, thus a history of the hydration degrees has been established, Afterwards, an attempt was made to correlate the compressive strength with the evolution of the degree of hydration for the different formulations, based on the results obtained, it is clearly observable that the compressive strength evolves with the degree of hydration and that the specimen containing the polypropylene fibers has the best mechanical performance with respect to compression.
国家哲学社会科学文献中心版权所有