摘要:Edible film can be used for food packaging. The main raw materials for edible film were alginates and plasticizers including glycerol and olive oil. This study aims to determine the characteristics of edible film composed of alginate, glycerol and olive oil. The study was carried out through the manufacture of edible films composed of alginates with various concentrations (2, 3, 4, 5 and 6%, w / v), 10% glycerol and 0.01% olive oil. Characteristics of edible film was observed including thickness, tensile strength, water vapor transmission rate, solubility and elongation. The results showed that the products met the edible film standard of the Japanese Industrial Standard. Concentration of alginate used had significant effect on thickness, tensile strength, solubility and elongation of the edible film. The films with 6% concentration of alginate showed optimum results with thickness 0,227 ± 0,008 mm, tensile strength 3,097 ± 0,384 MPa, elongation 86,682 ± 5,090 %, solubility 8,690 ± 2,892 % and water vapor transmission rate 45,477 ± 6,262 g/m2/24 h.
其他摘要:Edible film can be used for food packaging. The main raw materials for edible film were alginates and plasticizers including glycerol and olive oil. This study aims to determine the characteristics of edible film composed of alginate, glycerol and olive oil. The study was carried out through the manufacture of edible films composed of alginates with various concentrations (2, 3, 4, 5 and 6%, w / v), 10% glycerol and 0.01% olive oil. Characteristics of edible film was observed including thickness, tensile strength, water vapor transmission rate, solubility and elongation. The results showed that the products met the edible film standard of the Japanese Industrial Standard. Concentration of alginate used had significant effect on thickness, tensile strength, solubility and elongation of the edible film. The films with 6% concentration of alginate showed optimum results with thickness 0,227 ± 0,008 mm, tensile strength 3,097 ± 0,384 MPa, elongation 86,682 ± 5,090 %, solubility 8,690 ± 2,892 % and water vapor transmission rate 45,477 ± 6,262 g/m2/24 h.