摘要:The purpose of this study was to determine the physical properties of probiotic effervescent tablets with two different coatings that are tapioca and maltodextrin to improve water quality in shrimp farming ponds. This study used probiotics to improve the environmental quality of shrimp pond waters. Liquid probiotics from Research Institute for Coastal Aquaculture in Maros, South Sulawesi that contain Brevibacillus laterosporus. Probiotics that have been used are liquid and difficult to transport, therefore microencapsulation is carried out on liquid probiotics aimed at facilitating their distribution. The use of microencapsulating materials is to entrap or immobilize probiotic bacteria within microcapsule and to protect the bacteria during the drying process. Effervescent tablets were prepared in a dosage of 800 mg by wet granulation methods. This experiment was replicated 3 times. Tablets were evaluated for their physical properties there are mean weight, friability, hardness, disintegration time and pH. The results showed that mean weight for effervescent tablets with maltodextrin coatings was 796 mg, had a friability value 0.09%, a hardness value of 13.7 N and disintegration time of 10.68 minutes. Both probiotic effervescent tablets meet the standards pH of 7.07 and 6.67. The maltodextrin coatings was the best treatment of this study.
其他摘要:The purpose of this study was to determine the physical properties of probiotic effervescent tablets with two different coatings that are tapioca and maltodextrin to improve water quality in shrimp farming ponds. This study used probiotics to improve the environmental quality of shrimp pond waters. Liquid probiotics from Research Institute for Coastal Aquaculture in Maros, South Sulawesi that contain Brevibacillus laterosporus . Probiotics that have been used are liquid and difficult to transport, therefore microencapsulation is carried out on liquid probiotics aimed at facilitating their distribution. The use of microencapsulating materials is to entrap or immobilize probiotic bacteria within microcapsule and to protect the bacteria during the drying process. Effervescent tablets were prepared in a dosage of 800 mg by wet granulation methods. This experiment was replicated 3 times. Tablets were evaluated for their physical properties there are mean weight, friability, hardness, disintegration time and pH. The results showed that mean weight for effervescent tablets with maltodextrin coatings was 796 mg, had a friability value 0.09%, a hardness value of 13.7 N and disintegration time of 10.68 minutes. Both probiotic effervescent tablets meet the standards pH of 7.07 and 6.67. The maltodextrin coatings was the best treatment of this study.