摘要:Snow properties relevant to the fracture processes involved in dry-snow slab avalanche release include weak layer specific fracture energy, slab elastic modulus and density. Various techniques exist to determine these snow mechanical properties, but it is presently unclear how values determined with different methods compare. In the laboratory, the 3-D microstructure of cm-sized snow samples is reconstructed by micro-computed tomography ( μ CT) so that density and elastic modulus can be computed. In the field, fracture energy and modulus are estimated based on particle tracking velocimetry (PTV) of the displacement field observed during propagation saw tests. Snow stratigraphy is measured with the snow micro-penetrometer (SMP) in either, field or laboratory. We compared SMP-derived properties to corresponding μ CT- and PTV-derived values. Values of snow density related well to μ CT results and so were SMP-derived elastic moduli related to PTV-derived values. By taking into account snow anisotropy a good relation between SMP- and μ CT-derived moduli resulted suggesting the SMP-derived modulus characterizes the components of the modulus perpendicular to the axis of penetration. SMP- and PTV-derived values of fracture energy were correlated. The SMP can provide a bridge between scales and techniques, yet further improvements in signal interpretation are still needed.