摘要:We conducted seismic refraction surveys in the upper ablation area of Storglaciären, a small valley glacier located in Swedish Lapland. We estimated seismic-wave attenuation using the spectral-ratio method on the energy travelling in the uppermost ice with an average temperature of approximately −1 °C. Attenuation values were derived between 100 and 300 Hz using the P-wave quality factor, Q P , the inverse of the internal friction. By assuming constant attenuation along the seismic line we obtained mean Q P = 6 ± 1. We also observed that Q P varies from 8 ± 1 to 5 ± 1 from the near-offset to the far-offset region of the line, respectively. Since the wave propagates deeper at far offsets, this variation is interpreted by considering the temperature profile of the study area; far-offset arrivals sampled warmer and thus more-attenuative ice. Our estimates are considerably lower than those reported for field studies in polar ice (∼500–1700 at −28°C and 50–160 at −10°C) and, hence, are supportive of laboratory experiments that show attenuation increases with rising ice temperature. Our results provide new in situ estimates of Q P for glacier ice and demonstrate a valuable method for future investigations in both alpine and polar ice.