摘要:We report impact pressures exerted by three wet-snow avalanches on a pylon equipped with piezoelectric load cells. These pressures were considerably higher than those predicted by conventional avalanche engineering guidelines. The time-averaged pressure linearly increased with the immersion depth of the load cells and it was about eight times larger than the hydrostatic snow pressure. At the same immersion depth, the pressures were very similar for all three avalanches and no dependency between avalanche velocity and pressure was apparent. The pressure time series were characterized by large fluctuations. For all immersion depths and for all avalanches, the standard deviations of the fluctuations were, on average, about 20% of the mean value. We compare our observations with results of slow-drag granular experiments, where similar behavior has been explained by formation and destruction of chain structures due to jamming of granular material around the pylon, and we propose the same mechanism as a possible microscale interpretation of our observations.