首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A bifurcation and symmetry result for critical fractional Laplacian equations involving a perturbation
  • 本地全文:下载
  • 作者:Jiabin Zuo ; Mingwei Li ; Bomeng Li
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2020
  • 卷号:2020
  • 期号:1
  • 页码:1-14
  • DOI:10.1186/s13662-020-2532-3
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In the present paper, by using the variational and topological methods, we obtain a multiplicity and bifurcation result for the following fractional problems involving critical nonlinearities and a lower order perturbation: where Ω is an open and bounded domain with Lipschitz boundary, $N>2s$, with $s\in (0,1)$, g is a lower order perturbation of the critical power $ v ^{2_{s}^{*}-2}v$ and μ is a positive real parameter, $2_{s}^{*}=\frac{2N}{N-2s}$ is the fractional critical Sobolev exponent, while $\mathcal{L}_{K}$ is an integro-differential operator. Precisely, we show that the number of nontrivial solutions for this equation under suitable assumptions is at least twice the multiplicity of the eigenvalue. Our conclusions improve the related results in some respects.
  • 关键词:Integro-differential operator ; Critical nonlinearities ; Fractional problems ; Variational methods ;
国家哲学社会科学文献中心版权所有