首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Asymptotic behavior for the semilinear reaction–diffusion equations with memory
  • 本地全文:下载
  • 作者:Jiangwei Zhang ; Yongqin Xie ; Qingqing Luo
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2019
  • 卷号:2019
  • 期号:1
  • 页码:1-19
  • DOI:10.1186/s13662-019-2399-3
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, we consider the dynamics of a reaction–diffusion equation with fading memory and nonlinearity satisfying arbitrary polynomial growth condition. Firstly, we prove a criterion in a general setting as an alternative method (or technique) to the existence of the bi-spaces attractors for the nonlinear evolutionary equations (see Theorem 2.14). Secondly, we prove the asymptotic compactness of the semigroup on $L^,(\varOmega )\times L_{\mu }^,(\mathbb{R}; H_(^)( \varOmega ))$ by using the contractive function, and the global attractor is confirmed. Finally, the bi-spaces global attractor is obtained by verifying the asymptotic compactness of the semigroup on $L^{p}( \varOmega )\times L_{\mu }^,(\mathbb{R}; H_(^)(\varOmega ))$ with initial data in $L^,(\varOmega )\times L_{\mu }^,(\mathbb{R}; H_( ^)(\varOmega ))$.
  • 关键词:Reaction–diffusion equation ; Memory ; The bi-spaces asymptotic compact ; Global attractor ; Arbitrary polynomial growth ;
国家哲学社会科学文献中心版权所有