首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Improving dysarthric speech recognition using empirical mode decomposition and convolutional neural network
  • 本地全文:下载
  • 作者:Mohammed Sidi Yakoub ; Sid-ahmed Selouani ; Brahim-Fares Zaidi
  • 期刊名称:EURASIP Journal on Audio, Speech, and Music Processing
  • 印刷版ISSN:1687-4714
  • 电子版ISSN:1687-4722
  • 出版年度:2020
  • 卷号:2020
  • 期号:1
  • 页码:1-7
  • DOI:10.1186/s13636-019-0169-5
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, we use empirical mode decomposition and Hurst-based mode selection (EMDH) along with deep learning architecture using a convolutional neural network (CNN) to improve the recognition of dysarthric speech. The EMDH speech enhancement technique is used as a preprocessing step to improve the quality of dysarthric speech. Then, the Mel-frequency cepstral coefficients are extracted from the speech processed by EMDH to be used as input features to a CNN-based recognizer. The effectiveness of the proposed EMDH-CNN approach is demonstrated by the results obtained on the Nemours corpus of dysarthric speech. Compared to baseline systems that use Hidden Markov with Gaussian Mixture Models (HMM-GMMs) and a CNN without an enhancement module, the EMDH-CNN system increases the overall accuracy by 20.72% and 9.95%, respectively, using a k-fold cross-validation experimental setup.
  • 关键词:Dysarthria ; Empirical mode decomposition ; Hurst mode selection ; Convolutional neural network ;
国家哲学社会科学文献中心版权所有