首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Existence of solutions for integral boundary value problems of mixed fractional differential equations under resonance
  • 本地全文:下载
  • 作者:Shiying Song ; Yujun Cui
  • 期刊名称:Boundary Value Problems
  • 印刷版ISSN:1687-2762
  • 电子版ISSN:1687-2770
  • 出版年度:2020
  • 卷号:2020
  • 期号:1
  • 页码:1-12
  • DOI:10.1186/s13661-020-01332-5
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, we concerned the existence of solutions of the following nonlinear mixed fractional differential equation with the integral boundary value problem:$$\left \{ \textstyle\begin{array}{l} {}^{C}D^{\alpha}_{1-} D^{\beta}_{0+}u(t)=f(t,u(t),D^{\beta +1}_{0+}u(t),D^{\beta}_{0+}u(t)),\quad 0< t< 1,\\ u(0)=u'(0)=0,\qquad u(1)=\int^{1}_{0}u(t)\,dA(t), \end{array}\displaystyle \right . $$ where ${}^{C}D^{\alpha}_{1-}$ is the left Caputo fractional derivative of order $\alpha\in(1,2]$, and $D^{\beta}_{0+}$ is the right Riemann–Liouville fractional derivative of order $\beta\in(0,1]$. The coincidence degree theory is the main theoretical basis to prove the existence of solutions of such problems..
  • 关键词:Left Caputo fractional derivative ; Right Riemann–Liouville fractional derivative ; Boundary value problem ; Resonance ; Coincidence degree theory ;
国家哲学社会科学文献中心版权所有