首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Infinitely many high energy solutions for fractional Schrödinger equations with magnetic field
  • 本地全文:下载
  • 作者:Libo Yang ; Tianqing An ; Jiabin Zuo
  • 期刊名称:Boundary Value Problems
  • 印刷版ISSN:1687-2762
  • 电子版ISSN:1687-2770
  • 出版年度:2019
  • 卷号:2019
  • 期号:1
  • 页码:1-11
  • DOI:10.1186/s13661-019-01309-z
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper we investigate the existence of infinitely many solutions for nonlocal Schrödinger equation involving a magnetic potential $$ (-\triangle )_{A}^{s}u+V(x)u=f\bigl(x, \vert u \vert \bigr)u, \quad\text{in } {\mathbb {R}}^{N}, $$ where $s\in (0,1)$ is fixed, $N>2s$, $V:{\mathbb {R}}^{N}\rightarrow {\mathbb {R}}^{+}$ is an electric potential, the magnetic potential $A:{\mathbb {R}}^{N}\rightarrow {\mathbb {R}}^{N}$ is a continuous function, and $(-\triangle )_{A}^{s}$ is the fractional magnetic operator. Under suitable assumptions for the potential function V and nonlinearity f, we obtain the existence of infinitely many nontrivial high energy solutions by using the variant fountain theorem..
  • 关键词:Schrödinger equation ; Fractional magnetic operator ; Variant fountain theorem ;
国家哲学社会科学文献中心版权所有