首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:A condition for blow-up solutions to discrete p -Laplacian parabolic equations under the mixed boundary conditions on networks
  • 本地全文:下载
  • 作者:Soon-Yeong Chung ; Min-Jun Choi ; Jaeho Hwang
  • 期刊名称:Boundary Value Problems
  • 印刷版ISSN:1687-2762
  • 电子版ISSN:1687-2770
  • 出版年度:2019
  • 卷号:2019
  • 期号:1
  • 页码:1-21
  • DOI:10.1186/s13661-019-01294-3
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, we investigate the condition$$(C_{p})\quad \alpha \int _{0}^{u}f(s)\,ds \leq uf(u)+\beta u^{p}+\gamma ,\quad u>0 $$ for some $\alpha >2$, $\gamma >0$, and $0\leq \beta \leq \frac{ (\alpha -p ) \lambda _{p,0}}{p}$, where $p>1$, and $\lambda _{p,0}$ is the first eigenvalue of the discrete p-Laplacian $\Delta _{p,\omega }$. Using this condition, we obtain blow-up solutions to discrete p-Laplacian parabolic equations$$ \textstyle\begin{cases} u_{t} (x,t )=\Delta _{p,\omega }u (x,t )+f(u(x,t)), & (x,t )\in S\times (0,+\infty ), \\ \mu (z)\frac{\partial u}{\partial _{p} n}(x,t)+\sigma (z) \vert u(x,t) \vert ^{p-2}u(x,t)=0, & (x,t )\in \partial S\times [0,+\infty ), \\ u (x,0 )=u_{0}\geq 0\quad (\mbox{nontrivial}), & x\in S, \end{cases} $$ on a discrete network S, where $\frac{\partial u}{\partial _{p}n}$ denotes the discrete p-normal derivative. Here μ and σ are nonnegative functions on the boundary ∂S of S with $\mu (z)+\sigma (z)>0$, $z\in \partial S$. In fact, we will see that condition $(C_{p})$ improves the conditions known so far..
  • 关键词:Discrete p -Laplacian ; Semilinear parabolic equation ; Blow-up ;
国家哲学社会科学文献中心版权所有