首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Metal–organic framework–derived Ni@C and NiO@C as anode catalysts for urea fuel cells
  • 本地全文:下载
  • 作者:Thao Quynh Ngan Tran ; Bang Ju Park ; Woo Hyun Yun
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-019-57139-7
  • 出版社:Springer Nature
  • 摘要:Highly porous self-assembled nanostructured Ni@C and NiO@C were synthesized via calcination of a Ni-based metal-organic framework. The morphology, structure, and composition of as synthesized Ni@C and NiO@C were characterized by SEM, FIB-SEM, TEM, and XRD. The electro-catalytic activity of the Ni@C and NiO@C catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the Ni@C had a higher residual carbon content and a higher specific surface area than NiO@C, thus exhibiting an enhanced electrochemical performance for urea oxidation. A direct urea fuel cell with Ni@C as an anode catalyst featured an excellent maximum power density of 13.8 mW cm -2 with 0.33 M urea solution in 1 M KOH as fuel and humidified air as oxidant at 50 °C, additionally showing excellent stability during continuous 20-h operation. Thus, this work showed that the highly porous carbon-supported Ni catalysts derived from Ni-based metal-organic framework can be used for urea oxidation and as an efficient anode material for urea fuel cells.
国家哲学社会科学文献中心版权所有