首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Prey and predator overlap at the edge of a mesoscale eddy: fine-scale, in-situ distributions to inform our understanding of oceanographic processes
  • 本地全文:下载
  • 作者:Moritz S. Schmid ; Robert K. Cowen ; Kelly Robinson
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-16
  • DOI:10.1038/s41598-020-57879-x
  • 出版社:Springer Nature
  • 摘要:Eddies can enhance primary as well as secondary production, creating a diverse meso- and sub-mesoscale seascape at the eddy front which can affect the aggregation of plankton and particles. Due to the coarse resolution provided by sampling with plankton nets, our knowledge of plankton distributions at these edges is limited. We used a towed, undulating underwater imaging system to investigate the physical and biological drivers of zoo- and ichthyoplankton aggregations at the edge of a decaying mesoscale eddy (ME) in the Straits of Florida. Using a sparse Convolutional Neural Network we identified 132 million images of plankton. Larval fish and Oithona spp. copepod concentrations were significantly higher in the eddy water mass, compared to the Florida Current water mass, only four days before the ME's dissipation. Larval fish and Oithona distributions were tightly coupled, indicating potential predator-prey interactions. Larval fishes are known predators of Oithona, however, Random Forests models showed that Oithona spp. and larval fish concentrations were primarily driven by variables signifying the physical footprint of the ME, such as current speed and direction. These results suggest that eddy-related advection leads to largely passive overlap between predator and prey, a positive, energy-efficient outcome for predators at the expense of prey.
国家哲学社会科学文献中心版权所有