首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:B4GALNT1 induces angiogenesis, anchorage independence growth and motility, and promotes tumorigenesis in melanoma by induction of ganglioside GM2/GD2
  • 本地全文:下载
  • 作者:Hideki Yoshida ; Lisa Koodie ; Kari Jacobsen
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-019-57130-2
  • 出版社:Springer Nature
  • 摘要:β-1,4-N-Acetyl-Galactosaminyltransferase 1 (B4GALNT1) encodes the key enzyme B4GALNT1 to generate gangliosides GM2/GD2. GM2/GD2 gangliosides are surface glycolipids mainly found on brain neurons as well as peripheral nerves and skin melanocytes and are reported to exacerbate the malignant potential of melanomas. In order to elucidate the mechanism, we performed functional analyses of B4GALNT1-overexpressing cells. We analyzed ganglioside pattern on four melanoma and two neuroblastoma cell lines by high performance liquid chromatography (HPLC). We overexpressed B4GALNT1 in GM2/GD2-negative human melanoma cell line (SH4) and confirmed production of GM2/GD2 by HPLC. They showed higher anchorage independence growth (AIG) in colony formation assay, and exhibited augmented motility. In vitro, cell proliferation was not affected by GM2/GD2 expression. In vivo, GM2/GD2-positive SH4 clones showed significantly higher tumorigenesis in NOD/Scid/IL2Rγ-null mice, and immunostaining of mouse CD31 revealed that GM2/GD2 induced remarkable angiogenesis. No differences were seen in melanoma stem cell and Epithelial-Mesenchymal Transition markers between GM2/GD2-positive and -negative SH4 cells. We therefore concluded that B4GALNT1, and consequently GM2/GD2, enhanced tumorigenesis via induction of angiogenesis, AIG, and cell motility. RNA-Seq suggested periostin as a potential key factor for angiogenesis and AIG. These findings may lead to development of novel therapy for refractory melanoma.
国家哲学社会科学文献中心版权所有