首页    期刊浏览 2024年07月09日 星期二
登录注册

文章基本信息

  • 标题:Signalling architectures can prevent cancer evolution
  • 本地全文:下载
  • 作者:Leonardo Oña ; Michael Lachmann
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-57494-w
  • 出版社:Springer Nature
  • 摘要:Cooperation between cells in multicellular organisms is preserved by an active regulation of growth through the control of cell division. Molecular signals used by cells for tissue growth are usually present during developmental stages, angiogenesis, wound healing and other processes. In this context, the use of molecular signals triggering cell division is a puzzle, because any molecule inducing and aiding growth can be exploited by a cancer cell, disrupting cellular cooperation. A significant difference is that normal cells in a multicellular organism have evolved in competition between high-level organisms to be altruistic, being able to send signals even if it is to their detriment. Conversely, cancer cells evolve their abuse over the cancer's lifespan by out-competing their neighbours. A successful mutation leading to cancer must evolve to be adaptive, enabling a cancer cell to send a signal that results in higher chances to be selected. Using a mathematical model of such molecular signalling mechanism, this paper argues that a signal mechanism would be effective against abuse by cancer if it affects the cell that generates the signal as well as neighbouring cells that would receive a benefit without any cost, resulting in a selective disadvantage for a cancer signalling cell. We find that such molecular signalling mechanisms normally operate in cells as exemplified by growth factors. In scenarios of global and local competition between cells, we calculate how this process affects the fixation probability of a mutant cell generating such a signal, and find that this process can play a key role in limiting the emergence of cancer.
国家哲学社会科学文献中心版权所有