摘要:A number of studies on texture and ensemble perception have shown that humans can immediately estimate the average of spatially distributed visual information. The present study characterized mechanisms involved in estimating averages for information distributed over both space and time. Observers viewed a rapid sequence of texture patterns in which elements' orientation were determined by dynamic Gaussian noise with variable spatial and temporal standard deviations (SDs). We found that discrimination thresholds increased beyond a certain spatial SD if temporal SD was small, but if temporal SD was large, thresholds remained nearly constant regardless of spatial SD. These data are at odds with predictions that threshold is uniquely determined by spatiotemporal SD. Moreover, a reverse correlation analysis revealed that observers judged the spatiotemporal average orientation largely depending on the spatial average orientation over the last few frames of the texture sequence - a recency effect widely observed in studies of perceptual decision making. Results are consistent with the notion that the visual system rapidly computes spatial ensembles and adaptively accumulates information over time to make a decision on spatiotemporal average. A simple computational model based on this notion successfully replicated observed data.