摘要:Climate change velocity is an increasingly used metric to assess the broad-scale climatic exposure and climate change induced risks to terrestrial and marine ecosystems. However, the utility of this metric in conservation planning can be enhanced by determining the velocities of multiple climatic drivers in real protected area (PA) networks on ecologically relevant scales. Here we investigate the velocities of three key bioclimatic variables across a nation-wide reserve network, and the consequences of including fine-grained topoclimatic data in velocity assessments. Using 50-m resolution data describing present-day and future topoclimates, we assessed the velocities of growing degree days, the mean January temperature and climatic water balance in the Natura 2000 PA network in Finland. The high-velocity areas for the three climate variables differed drastically, indicating contrasting exposure risks in different PAs. The 50-m resolution climate data revealed more realistic estimates of climate velocities and more overlap between the present-day and future climate spaces in the PAs than the 1-km resolution data. Even so, the current temperature conditions were projected to disappear from almost all the studied PAs by the end of this century. Thus, in PA networks with only moderate topographic variation, far-reaching climate change induced ecological changes may be inevitable.