首页    期刊浏览 2024年10月04日 星期五
登录注册

文章基本信息

  • 标题:Effect of the proton irradiation on the thermally activated flux flow in superconducting SmBCO coated conductors
  • 本地全文:下载
  • 作者:W. J. Choi ; D. Ahmad ; Y. I. Seo
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-58936-1
  • 出版社:Springer Nature
  • 摘要:We investigate changes in the vortex pinning mechanism caused by proton irradiation through the measurement of the in-plane electrical resistivity for H // c in a pristine and two proton-irradiated (total doses of 1 × 10 15 and 1 × 10 16  cm −2 ) SmBa 2 Cu 3 O 7-δ (SmBCO) superconducting tapes. Even though proton irradiation has no effect on the critical temperature ( T c ), the resulting artificial point defect causes an increase in normal state electrical resistivity. The electrical resistivity data around T c shows no evidence of a phase transition to the vortex glass state but only broadens with increasing magnetic field due to the vortex depinning in the vortex liquid state. The vortex depinning is well interpreted by a thermally activated flux flow model in which the activation energy shows a nonlinear temperature change \({\boldsymbol{U}}{\boldsymbol{(}}{\boldsymbol{T}},{\boldsymbol{H}}{\boldsymbol{)}}{\boldsymbol{=}}{{\boldsymbol{U}}}_{{\boldsymbol{0}}}{\boldsymbol{(}}{\boldsymbol{H}}{\boldsymbol{)}}{{\boldsymbol{(}}{\bf{1}}-{\boldsymbol{T}}{\boldsymbol{/}}{{\boldsymbol{T}}}_{{\boldsymbol{c}}}{\boldsymbol{)}}}^{{\boldsymbol{q}}}\) ( q  = 2). The field dependence of activation energy shows a \({{\boldsymbol{U}}}_{{\bf{0}}}{\boldsymbol{ \sim }}{{\boldsymbol{H}}}^{-{\boldsymbol{\alpha }}}\) with larger exponents above 4 T. This field dependence is mainly due to correlated disorders in pristine sample and artificially created point defects in irradiated samples. Compared with the vortex pinning due to correlated disorders, the vortex pinning due to the appropriate amount of point defects reduces the magnitude of U o ( H ) in the low magnetic field region and slowly reduces U o ( H ) in high magnetic fields.
国家哲学社会科学文献中心版权所有