首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Machine-Learning Studies on Spin Models
  • 本地全文:下载
  • 作者:Kenta Shiina ; Hiroyuki Mori ; Yutaka Okabe
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-6
  • DOI:10.1038/s41598-020-58263-5
  • 出版社:Springer Nature
  • 摘要:With the recent developments in machine learning, Carrasquilla and Melko have proposed a paradigm that is complementary to the conventional approach for the study of spin models. As an alternative to investigating the thermal average of macroscopic physical quantities, they have used the spin configurations for the classification of the disordered and ordered phases of a phase transition through machine learning. We extend and generalize this method. We focus on the configuration of the long-range correlation function instead of the spin configuration itself, which enables us to provide the same treatment to multi-component systems and the systems with a vector order parameter. We analyze the Berezinskii-Kosterlitz-Thouless (BKT) transition with the same technique to classify three phases: the disordered, the BKT, and the ordered phases. We also present the classification of a model using the training data of a different model.
国家哲学社会科学文献中心版权所有