首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:A Machine-learning Approach to Forecast Aggravation Risk in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease with Clinical Indicators
  • 本地全文:下载
  • 作者:Junfeng Peng ; Chuan Chen ; Mi Zhou
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-60042-1
  • 出版社:Springer Nature
  • 摘要:Patients with chronic obstructive pulmonary disease (COPD) repeat acute exacerbations (AE). Global Initiative for Chronic Obstructive Lung Disease (GOLD) is only available for patients in stable phase. Currently, there is a lack of assessment and prediction methods for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) patients during hospitalization. To enhance the monitoring and treatment of AECOPD patients, we develop a novel C5.0 decision tree classifier to predict the prognosis of AECOPD hospitalized patients with objective clinical indicators. The medical records of 410 hospitalized AECOPD patients are collected and 28 features including vital signs, medical history, comorbidities and various inflammatory indicators are selected. The overall accuracy of the proposed C5.0 decision tree classifier is 80.3% (65 out of 81 participants) with 95% Confidence Interval (CI):(0.6991, 0.8827) and Kappa 0.6054. In addition, the performance of the model constructed by C5.0 exceeds the C4.5, classification and regression tree (CART) model and the iterative dichotomiser 3 (ID3) model. The C5.0 decision tree classifier helps respiratory physicians to assess the severity of the patient early, thereby guiding the treatment strategy and improving the prognosis of patients.
国家哲学社会科学文献中心版权所有