首页    期刊浏览 2025年07月13日 星期日
登录注册

文章基本信息

  • 标题:Nonlinear dynamic stability of piezoelectric thermoelastic electromechanical resonators
  • 本地全文:下载
  • 作者:Masoud SoltanRezaee ; Mahdi Bodaghi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-020-59836-0
  • 出版社:Springer Nature
  • 摘要:This research work deals with analyzing instability and nonlinear behaviors of piezoelectric thermal nano-bridges. An adjustable thermo-elastic model with the ability to control stability conditions is developed to examine the system behavior at different temperatures. To increase the performance range and improve system characteristics, a piezovoltage is applied and a spring is connected to the sliding end of the deformable beam as design parameters. The partial differential equations (PDEs) are derived using the extended Hamilton’s principle and Galerkin decomposition is implemented to discretize the nonlinear equations, which are solved via a computational method called the step-by-step linearization method (SSLM). To improve the accuracy of the solution, the number of mode shapes and the size of voltage increments are analyzed and sufficient values are employed in the solution. The validity of the formulation and solution method is verified with experimental, analytical, and numerical data for several cases. Finally, the vibration and eigenvalue problem of the actuated nano-manipulator subjected to electrostatic and Casimir attractions are investigated. It is concluded that the fringing-fields correction changes the system frequency, static equilibrium, and pull-in characteristics significantly. The results are expected to be instrumental in the analysis, design, and operation of numerous adjustable advanced nano-systems.
国家哲学社会科学文献中心版权所有