首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Disease-causing mutations in subunits of OXPHOS complex I affect certain physical interactions
  • 本地全文:下载
  • 作者:Gilad Barshad ; Nicol Zlotnikov-Poznianski ; Lihi Gal
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-019-46446-8
  • 出版社:Springer Nature
  • 摘要:Mitochondrial complex I (CI) is the largest multi-subunit oxidative phosphorylation (OXPHOS) protein complex. Recent availability of a high-resolution human CI structure, and from two non-human mammals, enabled predicting the impact of mutations on interactions involving each of the 44 CI subunits. However, experimentally assessing the impact of the predicted interactions requires an easy and high-throughput method. Here, we created such a platform by cloning all 37 nuclear DNA (nDNA) and 7 mitochondrial DNA (mtDNA)-encoded human CI subunits into yeast expression vectors to serve as both 'prey' and 'bait' in the split murine dihydrofolate reductase (mDHFR) protein complementation assay (PCA). We first demonstrated the capacity of this approach and then used it to examine reported pathological OXPHOS CI mutations that occur at subunit interaction interfaces. Our results indicate that a pathological frame-shift mutation in the MT-ND2 gene, causing the replacement of 126 C-terminal residues by a stretch of only 30 amino acids, resulted in loss of specificity in ND2-based interactions involving these residues. Hence, the split mDHFR PCA is a powerful assay for assessing the impact of disease-causing mutations on pairwise protein-protein interactions in the context of a large protein complex, thus offering a possible mechanistic explanation for the underlying pathogenicity.
国家哲学社会科学文献中心版权所有