首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Genome-scale metabolic model of the rat liver predicts effects of diet restriction
  • 本地全文:下载
  • 作者:Priyanka Baloni ; Vineet Sangar ; James T. Yurkovich
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-019-46245-1
  • 出版社:Springer Nature
  • 摘要:Mapping network analysis in cells and tissues can provide insights into metabolic adaptations to changes in external environment, pathological conditions, and nutrient deprivation. Here, we reconstructed a genome-scale metabolic network of the rat liver that will allow for exploration of systems-level physiology. The resulting in silico model (iRatLiver) contains 1,882 reactions, 1,448 metabolites, and 994 metabolic genes. We then used this model to characterize the response of the liver's energy metabolism to a controlled perturbation in diet. Transcriptomics data were collected from the livers of Sprague Dawley rats at 4 or 14 days of being subjected to 15%, 30%, or 60% diet restriction. These data were integrated with the iRatLiver model to generate condition-specific metabolic models, allowing us to explore network differences under each condition. We observed different pathway usage between early and late time points. Network analysis identified several highly connected "hub" genes (Pklr, Hadha, Tkt, Pgm1, Tpi1, and Eno3) that showed differing trends between early and late time points. Taken together, our results suggest that the liver's response varied with short- and long-term diet restriction. More broadly, we anticipate that the iRatLiver model can be exploited further to study metabolic changes in the liver under other conditions such as drug treatment, infection, and disease.
国家哲学社会科学文献中心版权所有