首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Modeling the Amplification of Immunoglobulins through Machine Learning on Sequence-Specific Features
  • 本地全文:下载
  • 作者:Matthias Döring ; Christoph Kreer ; Nathalie Lehnen
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-019-47173-w
  • 出版社:Springer Nature
  • 摘要:Successful primer design for polymerase chain reaction (PCR) hinges on the ability to identify primers that efficiently amplify template sequences. Here, we generated a novel Taq PCR data set that reports the amplification status for pairs of primers and templates from a reference set of 47 immunoglobulin heavy chain variable sequences and 20 primers. Using logistic regression, we developed TMM, a model for predicting whether a primer amplifies a template given their nucleotide sequences. The model suggests that the free energy of annealing, ΔG, is the key driver of amplification (p = 7.35e-12) and that 3' mismatches should be considered in dependence on ΔG and the mismatch closest to the 3' terminus (p = 1.67e-05). We validated TMM by comparing its estimates with those from the thermodynamic model of DECIPHER (DE) and a model based solely on the free energy of annealing (FE). TMM outperformed the other approaches in terms of the area under the receiver operating characteristic curve (TMM: 0.953, FE: 0.941, DE: 0.896). TMM can improve primer design and is freely available via openPrimeR ( http://openPrimeR.mpi-inf.mpg.de ).
国家哲学社会科学文献中心版权所有