首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Three dimensional structures of putative, primitive proteins to investigate the origin of homochirality
  • 本地全文:下载
  • 作者:Akifumi Oda ; Tomoki Nakayoshi ; Koichi Kato
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-8
  • DOI:10.1038/s41598-019-48134-z
  • 出版社:Springer Nature
  • 摘要:Primitive proteins are likely to have been constructed from non-enzymatically generated amino acids, due to the weak enzymatic activities of primitive biomolecules such as ribozymes. On the other hand, almost all present proteins are constructed only from L-amino acids. Therefore, there must have been a mechanism early in the origins of life that selected for one of the optical isomers of amino acids. In this study, we used molecular dynamics simulations to predict the three-dimensional structures of the putative primitive proteins constructed only from glycine, alanine, aspartic acid, and valine ([GADV]-peptides). The [GADV]-peptides were generated computationally at random from L-amino acids (L-[GADV]-peptides) and from both L- and D-amino acids (DL-[GADV]-peptides). The results indicate that the tendency of secondary structure formation for L-[GADV]-peptides was larger than that for DL-[GADV]-peptides, and L-[GADV]-peptides were more rigid than DL-[GADV]-peptides. These results suggest that the proteins with rigid structure motifs were more prone to have been generated in a primordial soup that included only L-amino acids than a the soup including racemic amino acids. The tendency of the rigid structure motif formation may have played a role in selecting for the homochirality that dominates life on Earth today.
国家哲学社会科学文献中心版权所有