摘要:Electro-catalyst design with superior performance and reduced precious metal content (compared to state-of-the-art Pt/C) has been a challenge in proton exchange membrane fuel cells, preventing their widespread adoption. Metallic glasses have recently shown promising performance and large electrochemical surface area in catalytic reactions. The electro-catalytic behavior of recently developed Pt-, Pd-, and Pt/Pd-based metallic glasses was evaluated in this study using scanning electrochemical microscopy. The influence of chemistry and electronic structure on catalytic behavior was studied using scanning kelvin probe technique. The work function for the metallic glasses was lower by 75 mV to 175 mV compared to pure Pt. This resulted in higher catalytic activity for the amorphous alloys, which was attributed to the ease of charge transfer on the surface. The binding energy for the metallic glasses, measured using X-ray photoelectron spectroscopy, was higher by 0.2 eV to 0.4 eV. This explained easier removal of adsorbed species from the surface of amorphous alloys. The synergistic effect of Pt and Pd in alloys containing both the noble metals was demonstrated towards hydrogen oxidation reaction.