首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Classifying attentional vulnerability to total sleep deprivation using baseline features of Psychomotor Vigilance Test performance
  • 本地全文:下载
  • 作者:Eric Chern-Pin Chua ; Jason P. Sullivan ; Jeanne F. Duffy
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-019-48280-4
  • 出版社:Springer Nature
  • 摘要:There are strong individual differences in performance during sleep deprivation. We assessed whether baseline features of Psychomotor Vigilance Test (PVT) performance can be used for classifying participants' relative attentional vulnerability to total sleep deprivation. In a laboratory, healthy adults (n = 160, aged 18-30 years) completed a 10-min PVT every 2 h while being kept awake for ≥24 hours. Participants were categorized as vulnerable (n = 40), intermediate (n = 80), or resilient (n = 40) based on their number of PVT lapses during one night of sleep deprivation. For each baseline PVT (taken 4-14 h after wake-up time), a linear discriminant model with wrapper-based feature selection was used to classify participants' vulnerability to subsequent sleep deprivation. Across models, classification accuracy was about 70% (range 65-76%) using stratified 5-fold cross validation. The models provided about 78% sensitivity and 86% specificity for classifying resilient participants, and about 70% sensitivity and 89% specificity for classifying vulnerable participants. These results suggest features derived from a single 10-min PVT at baseline can provide substantial, but incomplete information about a person's relative attentional vulnerability to total sleep deprivation. In the long term, modeling approaches that incorporate baseline performance characteristics can potentially improve personalized predictions of attentional performance when sleep deprivation cannot be avoided.
国家哲学社会科学文献中心版权所有