首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Hyperglycemia induces spermatogenic disruption via major pathways of diabetes pathogenesis
  • 本地全文:下载
  • 作者:Constanze C. Maresch ; Dina C. Stute ; Thomas Fleming
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-019-49600-4
  • 出版社:Springer Nature
  • 摘要:Diabetes-induced hyperglycemia has previously been shown to impact on male sub-/infertility, however, still little is known about the underlying mechanisms. In the present study we have addressed three major biochemical pathways implicated in the pathogenesis of hyperglycemia induced organ damage (the advanced glycation end product (AGE) formation pathway, the diacylglycerol-protein kinase C pathway (PKC), and the polyol pathway) in both testis and epididymis of the Ins2 Akita mouse model of Type 1 diabetes (T1DM). Hyperglycemia activated both the PKC and the polyol pathway in a significant and progressive manner within the testis, but not within the epididymis. While the AGE receptor was ubiquitiously expressed in the testis, concentrations of precursor methylglyoxal and AGE carboxymethyllysine were increased in both epididymis and testis in diabetic mice. However, AGEs did not activate intracellular pathways of ERK1, ERK2, Rela, Nrf-2, IkBkB, NFkB except CDC42, Akt1. In conclusion, two of the major pathways of hyperglycemia-induced organ damage were clearly activated within the testis of T1DM mice. This provides therapeutical opportunities in the treatment of diabetic male reproductive dysfunction.
国家哲学社会科学文献中心版权所有