首页    期刊浏览 2024年09月21日 星期六
登录注册

文章基本信息

  • 标题:Mixing rate in Classical Many Body Systems
  • 本地全文:下载
  • 作者:Gad Frenkel ; Moshe Schwartz
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-7
  • DOI:10.1038/s41598-019-47269-3
  • 出版社:Springer Nature
  • 摘要:Mixing in many body systems is intuitively understood as the change in time of the set of neighbors surrounding each particle. Its rate and its development over time hold important clues to the behavior of many body systems. For example, gas particles constantly change their position and surrounding particles, while in solids one expects the motion of the atoms to be limited by a fixed set of neighboring atoms. In other systems the situation is less clear. For example, agitated granular systems may behave like a fluid, a solid or glass, depending on various parameter such as density and friction. Thus, we introduce a parameter which describes the mixing rate in many body systems in terms of changes of a properly chosen adjacency matrix. The parameter is easily measurable in simulations but not in experiment. To demonstrate an application of the concept, we simulate a many body system, with particles interacting via a two-body potential and calculate the mixing rate as a function of time and volume fraction. The time dependence of the mixing rate clearly indicates the onset of crystallization.
国家哲学社会科学文献中心版权所有